Flexural Strength in a Whole MDF Panel; a Nondestructive Approach

Document Type: Original Article

Author

Darkoob Nondestructive Testers, an Approved Knowledge Based Company, Karaj , Iran

Abstract

A vibrational base nondestructive method is proposed to estimate the modulus of rupture (MOR) in medium density fiberboard (MDF) whole plate. A premium grade MDF panel was tested in longitudinal and flexural vibration approaches in panel longitudinal axis and its perpendicular direction. Then, the panel was cut into smaller and smaller plates and prismatic beams while the vibrational properties were collected in each step. Finally, the static bending method was used to evaluate the static MOE and MOR in final prismatic MDF beams. The dynamic and static MOEs were compared together and used along with the logarithmic decrement to correlate with static MOR of the beams. A multi-regression model of lumber MOR prediction was fitted also to MDF plate, considering a correction coefficient in terms of vibration plane (longitudinal or flexural). The modified multi-regression model for the MDF panel was successful to estimate MOR, comparable to those of obtained in static bending standard methodology

Keywords


[1] M.H. Gabr, N.T. Phong, M.A. Abdelkareem, K. Okubu, K. Uzawa , I. Kimpara, T. Fujii . Mech, Therm Nano.

20 (2)(2013), 819.

[2] P. Mirbolouk , M. Roohnia , BioResources. 10(1)(2015), 613.

[3] L. Brancheriau, Galloway, A.L. (ed.), Nova Sci Publishers, (2011). 205.

[4] J. Bodig, B.A. Jayne, Mech of Wood and Wood Composite (Persian Translation by Ebrahimi G.). Tehran

 ,Iran: Tehran University Press (1993)

[5] U.B. Halabe, G.M. Bidigalu, H.V.S. Gangarao, R. Ross, Nondestruc Evaluat. Tech. Mater. Evaluat. 55(9)

(1997), 1013.

[6] J. Ayarkwa, Y. Hirashima, K. Ando, Y. Sasaki. Wood and Fiber Sci. 33(3)(2001a), 450.

[7] J. Ayarkwa, Y. Hirashima, Y. Sasaki. African Hardwoods Using Longitudinal Vibration. Forest Prod. J. 51(1)

(2001b), 85.

[8] R. Ross, J. Zerbe, X. Wang, D. Green, R. Pellerin. Stress Wave Nondestructive For. Prod. J. 55(3) (2005).

  90.

[9] C.j. Lin, T.H. Yang, D.Z. Zhang, S.Y. Wang, F.C. Lin, Build and Envir., 42(3)(2007), 1250.

[10] Structural Timber – Strength Classes., (2003). European Standard EN338, 8.

[11] G. Tsoumis Sci. Technol. Wood, Van Nostrand Reinold, (1991), 204.

[12] F. Divos, A. S. Kiss. Edinburgh, Great Britain, (2010), 4.

[13] F. Divos, T. Tanaka, Holzforschung. 51(5) (1997), 467.

[14] M. Roohnia, I. Brémaud, D. Guibal, N. Manouchehri, NDT-LAB; Software to Evaluate the Mechanical

Properties of Wood, In: Proc International Conference on Integrated Approach to Wood Structure Behavior and

Applications – Joint meeting of ESWM and Cost Action E35, Fioravanti, M, Macchioni, N. (eds.), 15-17 May,

Florence – Italy, DISTAF – University of Florence. (2006), 213.

[15] M. Roohnia. NDT-LAB; System to Evaluate the Mechanical Properties of Wood. IR-Patent. Iranian Official

Journal. 2015-03-13(2007).

[16] M. Roohnia, S.F. Hashemi-dizaji, L.  Brancheriau, A. Tajdini , A. H. Hemmasi , N. Manouchehri .

BioResources. 6(2) (2011), 2055.

 [17] I. Brémaud. Caractérisation Mécanique des Bois et Facture: Origines et Recensement de la Variabilité.

Actes de la Journée d’étude Le bois: Instrument du Patrimoine Musical – Cité de la Musique.  29th May:

(2008), 24.

[18] Standard Test Methods for Evaluating Properties of Wood-base Fiber and Particle Panel Materials. ASTM D

1037(2006a), 30.