A Case Study of Three Different Brake Pads Used in Iranian Rail Systems

Document Type: Original Article

Authors

1 Train Brake Reference Laboratory (TBRL), School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran

2 School of Metallurgical and Materials Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract

Brake system and its components are of high importance in rail transportation systems. In this regard, brake linings, pads and blocks are especially important and this is why periodic evaluation of these parts is common practice in all rail systems. In this paper, some characteristics of three types of brake pads (friction materials in disc type brake mechanism) named types A, B and C (not to reveal the brand types) used in Iranian railways are compared against each other. Type A is an European product and the other two are Iranian pads manufactured domestically at different stages (type B is a new product and type C is an old one). The surface of pads, its compound, density, porosity, water adsorption, and impact strength and friction coefficient are evaluated. By comparing the results, it is appeared that the European brake pad possessed the lowest porosity, the highest impact strength and variation of its friction coefficient was more stable than the others. In addition, the performance of the type C compared with type B seemed to be much better in regard to wear rate and impact strength.

Keywords


[1] S. Mohammadi and A. Nasr, Int. J. Veh. Syst. Model. Test., 5(2010) 176.

[2] A. Nasr and S. Mohammadi, Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit,  224(2010) 523.

[3] S. Mohammadi and R. Serajian, Mech. Ind., 16(2015) 205.

[4] I. Hasegawa and S. Uchida, Japan Railw. Transp. Rev., 20(1999) 52.

[5] A. E. Anderson, Friction and Wear of Automotive Brakes, in ASM Handbook Volume 18, Friction, Lubrication, and Wear Technology, ASM International, (1992) 569.

[6] E. M. Tatarzycki and R. T. Webb, Friction and Wear of Aircraft Brakes, in ASM Handbook Volume 18, Friction, Lubrication, and Wear Technology, ASM International, (1992) 582.

[7] P. Dufrénoy and D. Weichert, J. Therm. Stress., 26(2003) 815.

[8] X. Xiao, Y. Yin, J. Bao, L. Lu, and X. Feng, Adv. Mech. Eng., 8(2016) 1.

[9] M. Eriksson, F. Bergman, and S. Jacobson, Wear, 252(2002) 26.

[10] U. S. Hong, S. L. Jung, K. H. Cho, M. H. Cho, S. J. Kim, and H. Jang, Wear, 266(2009) 739.

[11] H. Wang, X. Wu, X. Liu, and P. Cong, J. Macromol. Sci. Part A, 48(2011) 261.

[12] H.-Q. Wang, X.-Y. Wu, T.-S. Li, X.-J. Liu, and P.-H. Cong, J. Appl. Polym. Sci., 126(2012) 1746.

[13] H. Wang, G. Zhuang, C. Wang, and S. Zheng, J. Macromol. Sci. Part A, 48(2011) 531.

[14] X. Liu, H. Wang, X. Wu, J. Bu, and P. Cong, J. Macromol. Sci. Part B-Physics, 53(2014) 707.

[15] H. Jang, K. Ko, S. Kim, R. Basch, and J. Fash, Wear, 256(2004) 406.

[16] S. J. Kim, M. Hyung Cho, K. Hyung Cho, and H. Jang, Tribol. Int., 40(2007) 15.

[17] V. Matějka, Y. Lu, Y. Fan, G. Kratošová, and J. Lešková, Wear, 265(2008) 1121.

[18] A. R. M. Lazim, M. Kchaou, M. K. A. Hamid, and A. R. A. Bakar, Wear, 358–359(2016) 123.

[19] M. Kchaou, A. Sellami, A. R. Abu Bakar, A. R. M. Lazim, R. Elleuch, and S. Kumar, Steel Compos. Struct., 19(2015) 939.

[20] D. W. Wang, J. L. Mo, H. Ouyang, G. X. Chen, M. H. Zhu, and Z. R. Zhou, Mech. Syst. Signal Process., 46(2014) 191.

[21] T. Moreno, X. Querol, V. Martins, M. C. Minguillón, C. Reche, L. H. Ku, H. R. Eun, K. H. Ahn, M. Capdevila, and E. de Miguel, Environ. Sci. Process. Impacts, 19(2017) 59.

[22] V. Martins, T. Moreno, M. C. Minguilln, B. L. Van Drooge, C. Reche, F. Amato, E. De Miguel, M. Capdevila, S. Centelles, and X. Querol, Environ. Pollut., 208(2016) 125.

[23] ASTM Standard D792, Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement, (2013).

[24] ISO Standard 5017, Dense Shaped Refractory Products Determination of Bulk Density, Apparent Porosity and true Porosity, (2013).

[25] ASTM Standard D570, Standard Test Method for Water Absorption of Plastics, (2018).

[26] ASTM Standard E23, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, (2018).

[27] G. Cueva, A. Sinatora, W. L. Guesser, and A. P. Tschiptschin, Wear, 255(2003) 1256.

[28] ASTM Standard G99, Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, (2017).

[29] P. D. Neis, N. F. Ferreira, and J. C. Poletto, J. Brazilian Soc. Mech. Sci. Eng., 38(2016) 1935.