Synthesis of Lead Titanate Nanostructure by Mechanical Activation Method and Evaluating of its Photocatalytic Decolorization of Methyl orange

Document Type: Original Article


Department of Materials Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran


In this study, lead titanate nanopowder was synthesized using mechanical activation. Raw materials including titanium oxide powder (anatase) and Lead oxide (ІІ) with a ball to powder weight ratio of 1: 10 and the powder ratio of 1:1 were milled in a planetary ball mill for 30 hours. Then, they were heated at 800, 900 and 1000 °C. The volatility of lead and the formation of secondary phases were prevented using this method. The obtained nanopowder was investigated by field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The UV absorption spectroscopy was used to calculate the energy gap. Photocatalytic activity of nanopowder by dye degradation of methyl orange under UV light was evaluated. The effects of various influential parameters including initial dye concentration, photocatalyst dose and pH on the dye decolorization were also investigated. The optimum value for initial dye concentration and photocatalyst dose, obtained 10 ppm and 0.042 g, respectively. Also, the best rate of decolorization observed at pH=4. The results suggested that photocatalytic process is a beneficial method for decolorizing methyl orange dye.


[1] A. Nagham and A. Ageena, J. Eng. Technol., 28,(2010), 859.

[2] P. Niu and J. Hao, Colloids Surf A: Physicochem. Eng. Asp., 431, (2013), 127.

[3] P. Zhang, Q. An, J. Guo and C. C. Wang, Colloid Interf. Sci., 389, (2013), 10.

[4] D. Zhao, W. Zhang, X. Wang and C. Chen, Procedia Environ. Sci., 18, (2013), 890.

[5] B. Royer, N. F. Cardoso, E. C. Lima, V. S. O. Ruiz, T. R. Macedo and C. Airoldi, Colloid Interf. Sci., 336, (2009), 398.

[6] Z. Zhang, Y. Xu, X. Ma, F. Li, D. Liu, Z. Chen, F. Zhang and D. D. Dionysiou, J. Hazard. Mater.,  271, (2012), 209.

[7] H. Zhu, R. Jiang, Y. Fu, Y. Guan, J. Yao, L. Xiao and G. Zeng, Desalination., 286, (2012), 41.

[8] M. Bielska and J. Szymanowski, Water Res., 40,(2006), 1027.

[9] Katarzyna Majewska-Nowak, Desalination, 221, (2008), 395.

[10] N. Al-Bastaki, Chem. Eng. Process.: Process Intensification, 43, (2004), 1561.

[11] S. K. Nataraj, K. M. Hosamani and T. M. Aminabhavi, Desalination, 249, (2009), 12.

[12] W. Jeng-Shiou, L. Chia-Hung, Ch. Khim Hoong and S. Shing-Yi, J. Membrane Sci., 309, (2008), 239.

[13] Ch. Suhong, Zh. Jian, Zh. Chenglu, Y. Qinyan, L. Yan and L. Chao, Desalination, 252, (2010), 149.

[14] L. Zhuannian, ZH. Anning, W. Guirong and ZH. Xiaoguang, Chin. J. Chem. Eng., 17, (2009), 942.

[15] O. E. Augustine,Chem. Eng. J., 143, (2008), 85.

[16] L. Jinshui, M. Shi and Z. Lingjie,Appl. Surf. Sci., 265, (2013), 393.

[17] W. J. Tseng and R. D. Lin, J. Colloid Interf. Sci., 428, (2014), 95.

[18] W. Hao, Y. Xi, J. Hu, T. Wang, Y. Du and X. L. Wang, J. Appl. Phys., 111, (2012), 07B301.

[19] G. Corro, U. Pal and N. Tellez, Int. J. Anal. Chem., 4, (2013), 125.

[20] C. Ren, B. Yang, M. Wu, J. Xu, Z. Fu and T. Guo, J. Hazard. Mater., 182, (2010), 123.

[21] J. Wang, J. Li and Y. W. Wang, Mech. Mater., 331, (2013).

[22] J. Kennedy, J. Leveneur and P. P. Murmu, AamirIqbal, Int. J. Chemtech. Res., 7, (2015), 90-593.

[23] Y. Wang, L. Yang and X. Wang, J. Ceram. Process. Res., 14, (2013), 1.

[24] K. Valdimir, Process. Appl. Ceram., 6, (2012), 37.

[25] A. Talebian, M. H. Entezari and N. Ghows, Chem. Eng. J., 229, (2013), 304.

[26] Sh. Zheng, L. Gao, Q. H. Zhang and J. K. Guo, J. Mater. Chem., 10, (2000), 723.

[27] M. Viviana, M. Silva. Rocha, P. Godoi, T. Leonardo. Ribeiro, O. Marluce and S. Guarda, Mater. Sci. Eng.: B, 185, (2014), 13.

[28] V. D. Mote, Y. Purushotham, B. N. Dole, J. Theory. Appl. Phys., 6, (2012).

[29] J. Tartaj, C. Moure, L. Lascano and P. Duran, J.Mater.Res.Bull. 36, (2001), 2301.

[30] M. L. Calzada, M. Alguero and L. Pardo, J. Sol-Gel Sci. Technol,13, (1998), 837.

[31] A. Udomporn and S. Ananta, Appl. Phys., 4, (2004), 186.

[32] A. Udomporn and S. Ananta, Mater. Lett., 58, (2003), 1154.

[33] S. Ananta, R. Tipakontitikul and T. Tunkasiri,Mater. Lett, 57, (2003), 2637.

[34] H. He, J. Yin, Y. Li, Y. Zhang, H. Qiu, J. Xu, T. Xu and C. Wang, Appl. Catal.. B: Environ., 156, (2014), 35.

[35] Y. Huang, Y. Cai, D. Qiao and H. Liu, Particuology., 9, (2011), 170.

[36] M. E. Olyaa, A. Pirkarami, M. Soleimani and M. Bahmaei, J. Environ. Manage., 121, (2013), 210.

[37] I. K. Konstantinou and T. A. Albanis, Appl. Catal. B, 49, (2004), 1.

[38] B. Krishnakumar, K. Selvam, R. Velmurugan and M. Swaminathan, Desalin. Water Treat., 24, (2010), 132.

[39] J. M. Lee, M. S. Kim, B. Hwang, W. Bae and B. W. Kim, Dyes Pigments J., 56, (2003), 59.

[40] D. A. Silva and C. G. Faria, J. Photoch. Photobio., 155, (2003), 133.