Investigation of Additive Manufacturing Process by LMD Method, Affecting Process Parameters on Microstructure and Quality of Deposition Layers

Document Type : Original Article

Authors

1 Department of Materials Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran

2 Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

Additive manufacturing (AM) is a general name used for production methods which have the capabilities of producing components directly from 3D computer aided design (CAD) data by adding material layer-by-layer until a final component is achieved. Included here are powder bed technologies, laminated object manufacturing and deposition technologies. These technologies are presently used for various applications in engineering industry as well as other areas of society, such as medicine, aerospace, architecture, cartography, entertainment. Laser metal deposition (LMD) using powder as an additive is an AM process which uses a multi-axis computer numerical control (CNC) machine to guide the laser beam and powder nozzle over the deposition surface. The component is built by depositing adjacent beads layer by layer until the component is completed. LMD has lately gained attention as a manufacturing method which can add features to semi-finished components or as a repair method. LMD introduce a low heat input compared to arc welding methods and is therefore well suited in applications where a low heat input is of an essence. For instance, in repair of sensitive parts where too much heating compromises the integrity of the part. It has been found that the most influential process parameters are the laser power density, scanning speed, powder feeding rate and powder standoff distance and that these parameters has a significant effect on the characteristics of the material such as microstructure

Keywords


[1] S. Seetharaman,, M. Krishnan, F. Goh Chung Wen, N. Ahmed Khan and G. Ng Ka Lai, Solid Freeform Fabrication, (2016).
[2] S. M. Sepasgozar, A. Shi, L. Yang, S. Shirowzhan and D. J. Edwards, Addit. Manuf. Appl. Industry 4.0: A System. Crit. Rev. Build. 2020 Dec;10(12):231.
[3] J. Savolainen and M. Collan, Technol. Changes Busines Rev. Literature. Addit. Manuf. 101070, Mar, (2020), 1.
[4] ISO/ASTM 52900, Addit. Manuf., General Principles Terminology; INTERNATIONAL STANDARD; (2015).
[5] A. Garcia-Colomo, D. Wood, F. Martina and S. W. Williams, Int. J. Rapid Manuf., 9(2-3), (2020), 194.
[6] A. Segerstark, "Additive Manufacturing using Alloy 718 Powder: Influence of Laser Metal Deposition Process Parameters on Microstructural Characteristics." PhD diss., University West, (2015).
[7] J. Allen, An Investigation Into the Comparative Costs of Additive Manuf. Vs Mach. from Solid for Aero Engine Parts. ROLLS-ROYCE PLC DERBY (UNITEDKINGDOM); (2006).
[8] W. W. Wits, J. R. García and J. M. Becker, (MRO) Strategies. Procedia Cirp. Jan 1;40:693-8 (2016).
[9] D. Herzog, V. Seyda, E. Wycisk and C. Emmelmann, Addit. Manuf. Metal. Acta. Mater. Sep 15;117:371-92, (2016).
[10] D. Eisenbarth, F. Wirth, K. Spieldiener and K. Wegener, Int. Conf. Addit. Manuf. Prod. App., Springer, (2017), 152.
[11] B. Mueller, Addit. Manuf. Technol. Rapid Proto. Direct Digital Manuf., Assem. Autom., 32, 2, (2012).
[12] M. N. Ahsan, A. J. Pinkerton, R. J. Moat and J. Shackleton, Mater. Sci. Eng., A, 528, (2011), 7648.
[13] J. Laeng, J. G. Stewart and F. W. Liou, Laser Metal Forming Processes for Rapid Prototyping-A Rev. Int. J. Prod. Res., Nov 1;38(16):3973-96, (2000).
[14] J. S. Dunning and R. C. Doan, J. Mater. Sci., Aug;29(16):4268-72., (1994).
[15] H. Qi, M. Azer and A. Ritter, Studies of Standard Heat Treatment Effects on Microstructure and Mech. Properties of Laser Net Shape Manuf. Inconel 718. Metallurg. Mater. Transact. A., Oct;40(10):2410-22, (2009).
[16] X. Zhao, J. Chen, X. Lin and W. Huang, Study on Microstruct. and Mech. Prop. Laser Rapid Forming Inconel 718. Mater. Sci. Eng.: A. Apr 15;478(1-2):119-24, (2008).
[17] H. Qi, M. Azer and P. Singh, Airfoils. Int. J. Adv. Manuf. Technol., Apr 1;48(1-4):121-31, (2010).
[18] M. L. Griffith, M. T. Ensz, J. D. Puskar, C. V. Robino, J. A. Brooks, J. A. Philliber, J. E. Smugeresky and W. H. Hofmeister, (LENS). MRS Online Proceed. Library., Dec;625(1):9-20, (2000).
[19] C. P. Paul, P. Ganesh, S. K. Mishra, P. Bhargava, J. A. Negi and A. K. Nath, Invest. Laser Rapid Manuf. for Inconel-625 Comp. Optics & Laser Technol., Jun 1;39(4):800-5, (2007).
[20] M. Gharbi, P. Peyre, C. Gorny, M. Carin, S. Morville, P. Le Masson, D. Carron and R. Fabbro, J. Mater. Process. Technol., May 1;213(5), (2013), 791.
[21] K. Y. Benyounis, A. G. Olabi, M. S. Hashmi, J. Mater. Process. Technol., May 15;164, (2005), 978.
[22] M. C. Gaumann, P. Bezenc, P. Canalis, and W. Kurz. Acta Mater., 49, (2001), 1051.
[23] J. Ion, Proc.  Ind. App. Elsevier., Mar 22, (2005).
[24] Y. Chen, A. Wen, L. Shang and Y. Wang, Retraction Notice Opt. Laser Technol. 45 (2012), 342. Optics Laser Technol., Jun 48, (2013), 613.
[25] F. Liu, X. Lin, G. Yang, M. Song, J. Chen and W. Huang, Optics Laser Technol., Feb 1;43(1), (2011), 208.
[26] K. Shah, A. J. Pinkerton, A. Salman and L. Li, Mater. Manuf. Process., 25, (2010), 1372.
[27] G. K. Ng, A. E. Jarfors, G. Bi and H. Y. Zheng, Appl. Phys. A., Nov;97(3), (2009), 641.
[28] S. Bontha, N. W. Klingbeil, P. A. Kobryn and H. L. Fraser, Mater. Sci. Eng. A., Jul 15;513, (2009), 311.
[29] A. Riveiro, J. Del Val, R. Comesaña, F. Lusquiños, F. Quintero, M. Boutinguiza amd J. Pou, In Near Net Shape Manuf. Process. Springer., Cham., (2019), 105.
[30] B. Mueller, "Additive manufacturing technologies–Rapid prototyping to direct digital manufacturing." Assembly Automation, (2012).
[31] T. Wohlers, 3D Printing and Addit. Manuf. State of the Ind. Annual Worldwide Program. Report. Wohlers Report, (2017).
[32] C. L. Ventola, Med. App. 3D Print. Current and Projected Uses. Pharmacy and Therapeutics. Oct;39(10), (2014), 704.
[33] D. Garcia-Gonzalez, S. Garzon-Hernandez, A. Arias, App. Biomed. Mater. Compos. Part B: Eng., Apr 15;139, (2018), 117.
[34] D. Ackland, D. Robinson, P. V. Lee and G. Dimitroulis, Joint. Clinic. Biomech., Jul 1;56, (2018), 52.
[34] R. Chen, Yu-an Jin, J. Plott, J. Wensman and A. Shih, A Rev. Addit. Manuf., 12, (2016), 77.
[36] A. L. Jardini, M. A. Larosa, R. Maciel Filho, C. A. de Carvalho Zavaglia, L. F. Bernardes, C. S. Lambert, D. R. Calderoni and P. Kharmandayan, J. Cranio-Maxillofacial Surgery., Dec 1;42(8), (2014), 1877.
[37] J. Norman, R. D. Madurawe, C. M. Moore, M. A. Khan and A. Khairuzzaman, Adv. Drug Delivery Rev., Jan 1;108, (2017), 39.
[38] W. Faider, S. Pasquiers, N. Blin-Simiand and L. Magne, Plasma Sour. Sci. Technol., Nov 28;22(6), (2013), 5006.
[39] X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt and Y. M. Xie,, A Rev. Biomater., Mar 1;83, (2016), 127.
[40] J. H. Pallari, K. W. Dalgarno and J. Woodburn, IEEE Transact. Biomed. Eng., Mar 4;57(7), (2010), 1750.
[41] Layer by Layer. https://www.technologyreview.com/s/426391/layer-by-layer/13/10/2017.
[42] How 3D Printing Will Change Manufacturing - GE Reports. https://www.ge.com/reports/epiphany-disruption-ge-additive-chief-explains-3d-printing-willupend- manufacturing/13/10/2017.
[43] 3D Printing is Merged with Printed Electronics (NASDAQ:SSYS). http://investors.stratasys.com/releasedetail.cfm?ReleaseID=659142.13/10/2017. 
[44] D. I. Wimpenny, P. M. Pandey and L. J. Kumar, Edit. Adv. 3D Printing Addit. Manuf. Technol. Springer Singapore, (2017).
[45] S. H. Khajavi, J. Holmström and J. Partanen, Hub Configur. Technol. Maturity. Rapid. Proto. J., Oct 8, (2018).
[46]S. H.  Khajavi, J. Partanen, J. Holmström, Addit. Manuf. Spare Parts Supp. Chain. Comput. Ind., Jan 1;65(1), (2014), 50.
[47] Capabilities & Services | SpaceX. http://www.spacex.com/about/capabilities.
[48] https://www.spilasers.com/case-study-aerospace/aeroplane-engine-blade-repair-laser-metal-deposition-lmd/
[49] LASERTEC 65 3D: Additive Manufacturing in Milling Quality. http://us.dmgmori.com/blob/354972/caef73fe2f4d3e0baff239006d465164/pl0us-lasertec-65- 3d-pdf-data.pdf.
[50] Norsk Titanium to Deliver the World’s First FAA-Approved, 3D-Printed, Structural Titanium Components to Boeing. http://www.norsktitanium.com/norsk-titanium-to-deliverthe- worlds-first-faa-approved-3d-printed-structural-titanium-components-to-boeing/.
[51] Boeing Talks 3D Printing for Aerospace. http://www.engineering.com/3DPrinting/3DPrintingArticles/ArticleID/15475/Boeing-Talks- 3D-Printing-for-Aerospace.aspx. 13/10/2017.
[52] GKN delivers revolutionary Ariane 6 Nozzle to Airbus Safran Launchers. http://www.gkn.com/en/newsroom/news-releases/aerospace/2017/gkn-delivers-revolutionaryariane- 6-nozzle-to-airbus-safran-launchers/. 13/10/2017.
[53] Additive Manufacturing | GKN technology 2016 | GKN Group. http://www.gkn.com/en/our-technology/2016/additive-manufacturing/.
[54] Innovative 3D-printing by Aibus Aircraft. http://www.aircraft.airbus.com/galleries/photo-gallery/dg/idp/47642-a350-xwb-bracketproduced-with-3d-printing/?return_id=3170
[55] A world first: additively manufactured titanium components now onboard the Airbus A350 XWB. https://www.etmm-online.com/a-world-first-additively-manufactured-titaniumcomponents-now-onboard-the-airbus-a350-xwb-a-486310/.
[56] https://tutorials.one/additive-manufacturing/
[57] Arconic Talks Installing 3D-Printed Bracket on Series Production Commercial Airbus Airframe. http://www.engineering.com/3DPrinting/3DPrintingArticles/ArticleID/15709/Arconic-Talks-Installing-3D Printed-Bracket-on-Series-Production-Commercial-Airbus-Airframe.aspx.
[58] R. P. Mudge and N. R. Wald, Laser Engineered Net Shaping Adv. Addit. Manuf. and Repair. Welding J. New-York, Jan 1;86(1), (2007), 44.
[59] R. Liu, Z. Wang, T. Sparks, F. Liou and C. Nedic, Rapid Prototyp. J., Jan, (2017), 16.
[60] P. Szymczyk, I. Smolina, M. Rusińska, A. Woźna, A. Tomassetti amd E. Chlebus, Int. Conf. on Intell. Sys. Prod. Eng. Maint., Sep 17, (29), (2018), 752.