Application of Fully Green Bio-Composites in Manufacturing of Wind Turbine Blades: A Strategic Review

Document Type : Review Article

Authors

G H Patel College of Engineering & Technology, Gujarat, India

Abstract

Energy crisis has been posing a great concern on the exploitation of limited resources and causing dramatic impact on the global economy. With the growing shortage of electricity, a rapid evolution has been observed in the wind power technology as a clean source of renewable energy. Along with considering the strength requirements and considerable forces acting on the blades of wind turbines throughout its operating lifetime, the continued growth of the industry also strengthens the need for gaining critical material knowledge for the wind turbine blades. This gives direct rise to challenges in material selection process, a major area of potential improvement. The focus of this review paper is the need for improved material knowledge, advanced, economic, and environmentally friendly materials for wind turbine blades. Present piece of research attempts to conclude various potential green bio-composites which have an edge over the existing conventional materials for the application of wind turbine blades and could prove to be a remarkable advancement in the field of wind energy. Along with the material selection, detailed insights about property requirements for wind turbine blades, problems encountered in the present-day materials, characteristics for selecting reinforced fibres, material testing, and manufacturing process of wind turbine blades have also been studied

Keywords


[1] Y. Simsek, W. G. Santika, M. Anisuzzaman, T. Urmee, P. A. Bahri and R. Escobar, An Analysis of Addit. Energy Requirement to Meet the Sustainable Dev. Goals. J. Cleaner Prod., 272, (2020), 122646.
[2] M. Kamiura, Toray’s Strategy for Carbon Fiber Compos. Mater. In Proc. of the 3rd IT-2010 Strategy Seminar. Tokyo: Carbon Fiber Compos. Mater., (2008).
[3] K. P. M. Y. V. Dathu and R. Hariharan, Efficiency. Mater. Today: Proc., 33, (2020), 565.
[4] A. V. Pradeep, S. S. Prasad, L. V. Suryam and P. P. Kumari, A Comprehensive Rev. on Contemporary Materials Used for Blades of Wind Turbine. Mater. Today: Proc., 19, (2019), 556.
[5] G. Abumeri and F. Abdi, Advanced Composite Wind Turbine Blade Design Based on Durability and Damage Tolerance (No. ASC-2011-DOE-1). AlphaSTAR Corporation, Long Beach (United States), CA, (2012)
[6] F. Ardente, G. Beccali, M. Cellura and V. L. Brano, Life Cycle Assessment of a Solar Thermal Collector. Renewable Energy, 30(7), (2005), 1031.
[7] B. Hoevel and A. Sagnard, New Materials Tackle Weight, Strength and Cure Time Issues for Wind Turbine Blades. Reinf. Plast., 55(4), (2011), 38.
[8] Gupta, N. and Doddamani, M., 2018. Polymer Matrix Composites. JOM, 70(7), pp.1282-1283.
[9] A. Oun and B. F. Yousif, Two-Body Abrasion of Bamboo Fibre/Epoxy Compos. In Ecotribology Springer, Cham., (2016), 145.
[10] P. V. Deepthi, K. S. R. Raju and M. I. Reddy, Compos. Mater. Today: Proc., 18, (2019), 2114.   
[11] A. Wagenführ, A Lightweight Natural Fibre Compos. Construct. Lightweight Des. Worldwide, 10(1), (2017), 3.
[12] A. Corona, B. Madsen, M. Z. Hauschild and M. Birkved, Natural Fibre Selection for Compos. Eco-Des. CIRP Annals, 65(1), (2016), 13.
[13] A. Alavudeen, N. Rajini, S. Karthikeyan, M. Thiruchitrambalam and N. Venkateshwaren, Effect of Woven Fabric and Random Orientation. Mater. & Des., (1980-2015), 66, (2015), 246.
[14] H. Gohal, V. Kumar and H. Jena, Study of Natural Fibre Compos. Mater. and it’s Hybridization Tech. Mater. Today: Proc., (2020).
[15] I. Taha and G. A. Ziegmann, Comparison of Polym. J. Compos. Mater., 40(21), (2006), 1933. 
[16] A. Muhammad, M. R. Rahman, S. Hamdan and K. Sanaullah, Recent Dev. in Bamboo Fiber-Based Compos.: a Rev. Polym. Bull., 76(5), (2019), 2655.
[17] D. Bhonde, P. B. Nagarnaik, D. K. Parbat and U. P. Waghe, Phys. and Mech. Prop. of Bamboo (Dendrocalmus Strictus). Int. J. of Sci. & Eng. Res., 5(1), (2014), 455.
[18] D. Awalluddin, M. A. M. Ariffin, M. H. Osman, M. W. Hussin, M. A. Ismail, H. S. Lee and N. H. A. S. Lim, Mech. Prop. of Different Bamboo Species. In MATEC Web of Conf. EDP Sci., Vol. 138, (2017), 01024.
[19] D. U. Shah, M. C. Bock, H. Mulligan and M. H. Ramage, Therm. Cond. Eng. Bamboo Compos. J. Mater. Sci., 51(6), (2016), 2991.
[20] D. Liu, J. Song, D. P. Anderson, P. R. Chang and Y. Hua, Bamboo Fiber and it’s Reinf. Compos.: Struct. and Prop. Cellul., 19(5), (2012), 1449.
[21] L. A. Pothan, Z. Oommen S. and Thomas, Compos. Sci. and Technol., 63(2), (2003), 283.
[22] S. Dhakal, and B. K. Gowda, Compos. Mater. Today: Proc., 4(8), (2017), 7592.
[23] M. Idicula, S. K. Malhotra, K. Joseph and S. Thomas, Compos. Sci. Technol., 65(7-8), (2005), 1077.
[24] N. Chand and S. A. R. Hashmi, J. Mater. Sci., 28(24), (1993), 6724.
[25] P. N. Khanam, H. A. Khalil, G. R. Reddy and S. V. Naidu, Tensile, Flexural and Chemical Resistance Properties of Sisal Fibre Reinforced Polymer Compos.: Effect of Fibre Surface Treatment. J. Polym. Environ., 19(1), (2011), 115.
[26] Z. Alemayehu, R. B. Nallamothu, M. Liben, S. K. Nallamothu and A. K. Nallamothu, Experiment. Invest. Charact. Sisal Fiber as Compos. Mater. Light Cehicle Body Appl. Mater. Today: Proc., (2020).
[27] A. R. Prasad and K. M. Rao, Mechanical Properties of Natural Fibre Reinforced Polyester Compos.: Jowar, Sisal and Bamboo. Mater. Des., 32(8-9), (2011), 4658.
[28] S. M. Yukseloglu and H. Yoney, Adv. Sci. Technol. Towards Ind. Appl. Springer, Dordrecht, (2016), 255.
[29] S. R. T. Reddy, A. R. Prasad and K. Ramanaiah, Tensile and Flexural Properties of Biodegradable Jute Fiber Reinforced Poly Lactic Acid Compos. Mater. Today: Proc., (2020).
[30] A. C. C. Neves, L. A. Rohen, D. P. Mantovani, J. P. Carvalho, C. M. F. Vieira, F. P. Lopes, N. T. Simonassi, da S. F. Luz and S. N. Monteiro, J. Mater. Res. Technol., 9(2), (2020), 1296. 
[31] R. Potluri, Charact. Appl. In Green Compos. Springer, Singapore, (2019), 1.
[32] N. Sapiai, A. Jumahat, N. Shaari and A. Tahir, Mechanical Properties of Nanoclay-Filled Kenaf and Hybrid Glass/Kenaf Fiber Compos. Mater. Today: Proc., (2020).
[33] L. Ravindran, M. S. Sreekala and S. Thomas, Int. J. of Biol. Macromol., 131, (2019), 858.
[34]  A. Tribot, C. Delattre, E. Badel, C. G. Dussap, P. Michaud and de H. Baynast, Des. Industry. Crops Prod., 123, (2018), 539.
[35] V. G. Pratheep, E. B. Priyanka, S. Thangavel, J. J. Gousanal, P. B. Antony and E. D. Kavin, Investigation and Analysis of Corn Cob, Coir Pith with Wood Plastic Compos. Mater. Today: Proc., (2020).
[36] V. Dhinakaran, K. V. Surendar, M. H. Riyaz, and M. Ravichandran,. Rev. Process. Mater. Today: Proc., (2020).
[37] M. Niaounakis, Biopolymers: Appl. and Trends. William Andrew, (2015).
[38] G. Dorez, A. Taguet, L. Ferry and J. M. Lopez-Cuesta, Thermal and Fire Behavior of Natural Fibers/PBS Biocomposites. Polymer Degradation and Stability, 98(1), (2013), 87. 
[39] E. Frollini, N. Bartolucci, L. Sisti and A. Celli, Ind. Crops Prod., 45, (2013), 160.
[40] S. K. Su and C. S. Wu, J. Appl. Polymer Sci., 119(2), (2011), 1211.
[41] T. Hojo, Z. Xu, Y. Yang and H. Hamada, Tensile properties of bamboo, Jute and Kenaf mat-Reinf. Compos. Energy Procedia, 56, (2014),72. 
[42] A. S. Getme and B. Patel, A Rev. Bio-fiber’s as Reinforcement in Composites of Polylactic acid (PLA). Mater. Today: Proceedings, (2020).
[43] AZO Materials - Materials Testing and Development of Advanced Wind Turbine Blades https://www.azom.com/article.aspx?ArticleID=9719 (Accessed February 23,2021).
[44] M. Damiano and A. D’Ettore, 2018, June. Structural design of a multi-megawatt wind turbine blade with ONE SHOT BLADE® Technol. In J. Phys.Conf. Ser., (Vol. 1037, No. 4, IOP Publishing, (2002), 04.
[46] National Research Council. Assessment of Research Needs for Wind Turbine Rotor Mater. Technol. Washington, DC: The National Academies Press., (1991) https://doi.org/10.17226/1824.